Course title: Environmental Chemistry and Microbiology							
Course code: NRE 131	No. of credits: 3	L-T-P: 35-07-0	Learning				
			hours: 42				
Pre-requisite course code and title (if any): Fundamental knowledge of basic and applied							
chemistry							
Department: Department of Natural Resources							
Course coordinator:	Course in	Course instructor: Dr Udit Soni					
Contact details:	<u>.</u>						
Course type: Core	Course of	Course offered in: Semester 1					
C D ' '							

Course Description

The objective of the course is to provide detail understating of various aspects of chemistry, which are particularly valuable to environmental scientific practice and lay a foundation for understanding in specialized areas of environment management and practices. Students will get the training in analytic and conceptual skills required for environmental chemistry research.

Course objectives

- 1. To provide understating of various aspects of chemicals and chemistry, which are particularly valuable to environmental scientific practice
- 2. To lay a foundation for understanding in specialized areas of environment management and practices.

Course content						
SNo	Topic	L	T	P		
1.	Atmosphere: Chemical composition of atmosphere- particles, ions and radicals; formation of particulate matter; photochemical and chemical reactions in the atmosphere; chemistry of greenhouse gases and ozone layer depletion; gaseous transformations in the atmosphere and removal mechanisms; photochemical smog; nuclear winter.	8				
2.	Lithosphere: Chemical composition of lithosphere; water and air in soil; inorganic and organic components in soil; acid, base and ion-exchange reaction in the soil; soil acidity, salinity and sodocity; effects of ecological factors on the toxicity of soil; Bio-geochemical cycles.	8	2			
3.	Water: Basic concept of colloidal and quantitative chemistry. Oxidation-reduction reactions and equations; gas laws, equilibrium and Lechatelier's principle, activity and coefficients, variations in equilibrium relationships, shifting chemical equilibrium, amphoteric hydroxides, buffers and buffer index; solubility of salts, complex formation	9	3			
4.	Environmental Microbiology: Microorganisms and their association with man, animals and plants; Extremophilic microorganisms, Microbial metabolism; role of micro-organisms in environmental management.	4				
5.	Principles of environmental monitoring techniques— Neutron Activation Analysis; calorimetric; Colourimetry; Atomic Absorption Spectroscopy; Gas chromatography, HPLC, Ion exchange Chromatography and Polarography. XRF, XRD.	6	2			

Total		35	7	
Evaluation criteria				
• 2 minor tests:	15% each			
 Assignment/Presentation: 	20%			

Learning outcomes

• 1 major test (end semester):

- 1. The students will learn basic chemical contents in the context of environmental studies
- 2. Students will understand the theory behind the analytical techniques

50%

3. Students will learn the conceptual skills required for environmental chemistry research.

Pedagogical approach

Materials

Required text

- 1. Bailey R.A. (2002) Chemistry of the Environment, Academic Press, San Diego.
- 2. Masters G.M. (2004) *Introduction to Environmental Engineering and Science*, Second Edition, Pearson Education.

Suggested readings

- 1. Baird C. (1999) Environmental Chemistry (2nd edition), WH Freeman and Co.
- 2. Buell P. and Girard J. (2002) *Chemistry Fundamentals: An Environmental Perspective* (2nd edition), Jones & Bartlett Publishers.
- 3. Bunce N. (1991) Environmental Chemistry, Wuerz Publishing Ltd., Winnipeg, Canada.
- 4. Cunningham W.P. and Cunningham M.A. (2007) *Principles of Environmental Science: Inquiry and Applications*, Tata McGraw-Hill.
- 5. Harrison R.M. (1991) *Introductory Chemistry for the Environmental Sciences*, Cambridge University Press.
- 6. Harrison R.M. (Edited) (1999) *Understanding our Environment: An Introduction to Environmental Chemistry and Pollution*, Royal Society of Chemistry.
- 7. Miller G.T. (2001) Environmental Science, (eighth edition), Brooks/Cole.
- 8. Pepper I.L., Gerba C.P. and Brusseau M.L. (2006) *Environmental and Pollution Science*, Second edition, Academic Press.

Case studies

Websites

Journals

- 1. Applied Environmental Microbiology
- 2. Environmental Chemistry Letters
- 3. Journal of Environmental Chemistry and Ecotoxicology

Additional information (if any)

Student responsibilities

Attendance, feedback, discipline, guest faculty etc